
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria E L E C T R O N I C Ă şi T E L E C O M U N I C A Ţ I I
T R A N S A C T I O N S on E L E C T R O N I C S and C O M M U N I C A T I O N S

Tom 49(63), Fascicola 1, 2004

Adaptive Interfaces Based on FPGA Implemented
Artificial Neural Network

Ştefan Oniga1, Virgi l T i p o n u ţ , Atil la Buehman1, Daniel M i c 1

Abstract - The goal of this work is to build smart
interfaces with learning and adaptive capability. The
key element of the learning and adaptive behavior are
artificial neural network (ANIN) blocks, implemented in
FPGA using the System Generator tool for Simulink
developed by Xilinx Inc. This tool allow the easy
generation of hardware Description Language (I1DL)
code from a system representation in Simulink. This
VHDL design can then bc synthcsized for
implementation in the Xilinx family of FPGA devices.
The off-chip learning task is performed using Matlab
and the ANN's wcights are transferred automatically
from Matlab workspace to weights memory.
Keywords: smart, neural network, adaptive, learning,
FPGA, prosthetic

I. INTRODUCTION

The efforts made world wide by the large numbers
of universities and research organizations that are
involved in designing and building natural uscr
interfaces it seems to be not enough because of the
lack of adaptation and learning capabilitics. The use
of neural networks to add learning and adaptive
behavior to smart sensors is cssential and the FPGA
implementation is an easy an attractivc way for
hardware implementation.

Among possible applications are intelligent
computer peripherals enabling people with any kind
of handicap to use computer and communicate, as any
kind of industrial or domestic device with learning
and adaptive capabilities.

The goal of this work was to devclop hardware-
software codesign platform enabling the fast
development of smart interfaces with the addition of
sensors, hardware modules that can bc easily
connected and VHDL modules that can manage
sensors, basic behaviours (ex: features extraction,
pattern recognition, etc). Using this framework
development of new smart devices needs only design
and synlhesis of new VHDL drivers for the new
sensors and new application-specific ANNs. This
platform is based on low cost general purpose FPGA
boards wilhout need for hardware design.

This paper presents a new method for hardware
implementation of artificial neural networks (ANN) in
field programmable logic devices (FPGA) that can be
uscd in smart sensors development. It also permits the
development of the ANN's specific modules and
libraries for System Generator tool.

Main applicalions for such smart devices with
embedded and hidden intelligence at user are in the
prosthetic, automotive, "domotic" and automation
field where the trend is to produce easy-to-use devices

II. THE HARD WARE-SOFTWARE CODESIGN
PLATFORM

Smart devices must use multisensorial interfaces
with natural, adaptive behavior and learning
capability. The kcy for the adaptive and learning
behavior are VHDL described neural networks. Any
application of a new smart device should use these
ANN modules to add adaptive and learning capability.

The platform developed in order to provide a fast
prototyping environment for adaptive interfaces is
shown in Fig.I. and it was developed to facilitate the
use of codesign teehniques.
Other requiremcnts for the development platform are:

• Lxchangeability of sensors, thanks to common
interfaces for any class of VHDL drivers

• Reusability of developed VHDL components
• Reduced time to market

The Aduc812 microcontroler is used to implement
the Data Acquisition System and to adapt signal
sensors to neural network input requirements. The
reconfigurable device (XC2S50 Xilinx) is used to
implement the neural networks and other logic blocks
of the same application. The System Generator tool
for Simulink developed by Xilinx Inc. allow the easy
generation of hardware Description Language (HDL)
code from a system representation in Simulink. This
VHDL design can then be synthesized for
implementation in the Xilinx family of FPGA devices.

' Nortli University of Baia Mare, Electrotechnical Department
Dr. V. Babeş Slr., Nr. 62/A, 430083 Baia Mare. e-mail onigas@ubm.ro
2 Electronics and Telecommunications Faculty, Applied Electronic Department
Bd. V. Pârvan Nr. 2,300223 Timişoara, e-mail, tiponuUoietc.utt.ro

236

mailto:onigas@ubm.ro
http://tiponuUoietc.utt.ro

't PC
o
O­

:li
ii
~

~
Q.

'--- ­ MATLAB
- Neural Network Toolbox
- System Generator

ADUC812
Micro

contraler
FPGA

~
Parallellnterface r­ '5

u
~

'u
I "O

~
~

ANN " o
()

Fig. I nIl' <:od~sign pl~lform

FSR

Forea
 1­

sensors

fP ­

The developed fmmework allows del iet.'
eOI11I11Unk:I1Îon wÎth li PC in ord"r, 10 pcrform ofr·
chip trainÎng task or, to rransftr dala for 3nalysÎ$.
Soft\\arc is designed h1 manage the I:ommunicalioil
protocol with Mall.~lb via p:ualkl pon .

The pkuform could be used in\hl'.;e wa~'~:

\. 	 The n<:ur:ll ne\l\ork simulatiol1 lmJ karning
phase aflhe II'cighlS.

1. 	 The tlclwork design and hardware
impkmcnt:uion using Sys!cm Generator 1001 for
Simulink and Xilinx ISE.

3. 	 ~ormal use of tllC nelworl... (propag:nion phasc).

..,
'r' .'

Olltl

~

w~._.

~"OI ACe

Con1mIIQgIC

III. 	NEURAL \jETWORK DESIGN

A~ mentiOllcd abol't". with this mclhod ncural
networks could Ix' reuliv.'d using: lhc spt"citic modules
,'reatcd \\ith blod-.s rrom Xilin ... J31ockset.

Fig.2. shv\\s lh~ ncural nel\\ork model in
Simulijll.,. Tht main clement of neuron is the
ml.l)lipIY·ll,'c\llntJlo~ (MAC) blocI." Thi~ b)oc,k coutO
be implemcmed cffkiemly using existing dedic<lted
ll1ultiplkrs in Vinex II. Vine...: Il Pro or SP:J.111l1l III
FPGt\s. For C'xllmpl~ X('"2V2S0 (~ VinC'\ II FPGr\)
h:J.ţ H dediC"ll'd 1 S hits MAC blocks. 1l1e)' can be
inlpl~m(.'l1tC'd eflkientl)' cven in olher rPGAs without
,kdkmt'd I\I AC blocks. using Xilil1x LogiCORE
Gener;110r

--. .,,, M"I ..,
AcCIV8~0I11u"c:!iOO

,
'"

237

0.1. (RAM)

.",

". o••,..-
LI'~' w,

' ''-I>JIUS\Ra''',

o••

w.... 0.,

11 ..01 ...<~

Fig.3 presents a MAC block realized using blocks
from Xilinx Blockset library. The multiply-
accumulate operation is the bottleneck of ANNs
FPGA implementation, because require a large
amount of logic blocks. The resources depend in a
grate measure on the number of bits used to represent
data and weights.

Muttiplier

R e g i s t e r

R e s e t A c e

Fig. 3 Multiply-accumulate block

Table 1 presents resources used by the 16 bits
multiply-accumulate block, between parentheses are
shown resources used by the 16 bits multiply block.

Table 1
MAC implemented with

Used resources VIRTEX-II Xilinx Used resources
dedicated

multipliers
LogiCORE
multipliers

Slices 55 (29) 89 (63)
Flip Flops 56 (39) 123 (106)
Block RAMs 0 0
Look-up tables 66(17) 170(121)
Dedicated multipliers UD 0
% from a 50.000 11,58%
gates Spartan-II
% from a 250.000 3.58 % 5,79
gates Virtex-II
% from a 1.000.000 1,07% 1,73%
gates Virtex-II

Control logic block presented in Fig. 4. determines
neural network architecture. For example determines
number of neurons and the correspondence between
inputs and weights. For simplicity we have considered
that all neurons from a layer are connected to all
outputs of neurons from previous layer. In other cases
the not necessary connections could be deactivated
setting corresponding weights to zero.

-•CD
D a t a a d d r e s s

•CD
W e i g h t s a d d r e s s

W e i g h t s R O M
a d d r e s s c o u n t e r

k * 7 a
â=b

t>
1 z-5 a

â=b
t>

1 w
w

a
â=b

t>
R e l a ţ i o n a l i D e l a y

>CD
R e s e t A C C

ROM memory is used for storage of neurons
inputs weights, and the RAM memory as a data
buffer.

Transfer function is implemented using look-up
tables.

The resources consumed by a very simple network
with one layer of 7 neurons are presented in Table 2.
Between parenthesis are shown resources used by the
16 bits multiply-accumulate block.

Table 2

Used resources

MAC implemented with

Used resources VIRTEX-II
dedicated

multipliers

Xilinx
LogiCORE
multipliers

Slices 80 (55) 114(89)
Flip Flops 77(56) 144(123)
Block RAMs 3(0) 3(0)
Look-up tables 103 (66) 207 (170)
Dedicated multipliers K D 0
% from a 50.000
gates Spartan-II

-- 14,84%

% from a 250.000
gates Virtex-II

5?20% 7,42%

% from a 1.000.000
gates Virtex-II

1,56% 2,22%

The shown data are for 8 bits representation of
data and 12 bits used for weights.

Definition of system elements is made
automatically using variables that are taken from
Matlab workspace. In this way dimension of the
memories, registers, counters, as constants and
number of bits/word are automatically loaded in
Simulink representation of the ANN after the
simulatîon of the neural network in Matlab.

IV. RESULTS

As presented earlier the method was developed for
easy implementation of neural network used in smart
sensors. The chosen application for testing the method
was static hand gesture recognition using a data glove
equipped with optical fiber flex sensors. Figure 5
presents the implemented conîlguration for gesture
recognition.

First block is a paralîel port implementation and
ensure the correct data transfer between data
acquisition system and gesture recognition neural
network.

RNA1 is Feed-Forward network that can be
trained in many different ways but one of the most
common methods is gradient based learning using
back propagation. Other very used training method is
Hebbian learning rule. We have tested both of them
with good results. RNA 1 is used for input data
preprocessing and is build from one layer of NI
neurons, where NI represent the number of sensorial
inputs.

Fig. 4 Control logic block

238

date
|dbfpţ|

dbfpt|<

ack Gateway Out1

In1 Out1 nex led

A N N 2

Hex to 7
segment

Gateway Out 0 u t 1

Fig. 5 Gesture recognition network

The second network used tor classiflcation task is
a simple competitive network with one layer of N2
neurons, one for each of N2 gesture to be recognized.
Last block is a BCD to 7 segment decoder and it
displays the number of the recognized gesture.

A complete process from learning to propagation
is presented:

A. Learning phase

Training of the neural network can be executed
using a given set of inputs with the corresponding
outputs. The inputs for training are collected via
parallel port of a personal computer running Matlab,
and a data acquisition program developed by authors.
Input and output sets are stored in a file and will be
used to determine neural network weights.

The desired network architecture is simulated
using Neural Network Toolbox, the neural network
weights are saved in a file and will be loaded
automaticaîly from Matlab workspace to weight
(ROM) memory represented in Simulink. Many
networks architecture trained with different methods
could be simulated and the network that is best
performing for given application is choused for
hardware implementation.

B. Implementation phase

First step for transfer the neural network from
software simulation to hardware implementation is the
network modeling with System Generator tool for
Simulink, using Xilinx blocks or user created, neural
network specific blocks. One layer could be created
using only one ANN block from user created libraries
and the block parameters (number of neurons,
weights, bias) are loaded automaticaîly from Matlab
workspace. If the designed system is well performing
in simulation it could be transformed in VHDL code
that is made automaticaîly by System Generator Tool
for Simulink, developed by Xilinx.

To increase hardware performance, most System
Generator blocks are implemented in hardware using
Xilinx Smart-IP (Intellectual Property) LogiCOREs.

These modules make optimal use of FPGA resources
to maximize performance.

During code generation, the System Generator
creates all project files that are necessary for use in
Xilinx 6.2i ISE. Opening Project Navigator project
file, it is possible to import System Generator design
into the Project Navigator, and from there, it can be
synthesized, simulated, and implemented in the Xilinx
6.2i software tools environment.

Configuration ".bit" file is then downloaded in
FPGA using for example the Parallel cable IV and
Xilinx download program iMPACT.

C. Propagation phase

The sensorial outputs from ADUC812
microcontroller represented on 8 bits parallel format
and sampled at 10 ms are loaded in the neural network
implemented FPGA. For testing the developed
method we have used a sensorial system for an
artificial hand composed of:

Data glove as signal source related with fingers
and hand position

Force sensing resistors (FSR) to detect contact
with an object and the force being exerted

Data acquisition system made up with ADUC812
microconverter

Analog signals from FSR are converted in digital
signals by microconverter. Also it receives serial data
from glove and output both signals time multiplexed
in 8 bits parallel format. More precisely outputs 7
bytes of information about 5 fingers position and 2
about hand position (pitch and roii), followed by 6
bytes of information supplied by 6 touch-pressure
sensors located on the fingertips as well as on the
palm. The FPGA module serves as implementation
framework for neural networks. It receives data from
data acquisition system in 8 bits parallel format and
outputs the recognized posture number.

The recognized posture can serve as feedback in a
control system, or can be transmitted via a signal
generator to the peripheral nervous system for the
persons with loss of sensory nerve function, or can be
used for teleoperating a robotic hand.

239

REFERENCES

V. CONCLUSIONS

This paper has presented a new method for the
implementation of neural networks in FPGAs.

The main contribution of this work is the creation
of the framework that permits rapid development of
smart sensors with learning capability and adaptive
behavior.

Another contribution is the creation of neural
network specific modules such as MAC units,
activation function.

The proposed method permits to easily adapt the
number of neurons per layer, the weight of each input
and the activation function.

A testbench was developed for application that
permits to implement different types of neural
network with different kinds of architecture.

Future work will focus on development of other
neural network specific modules, optimization of
implemented modules, and implementation of on-chip
learning capability.

[1] Jihan Zhu, Peter Sutton, "FPGA Implementations of Neural
Networks - a Survey of a Decade of Progress", 2003.

[2] H. Ossoinig, E, Reisinger, Ch. Steger, R, Weiss, ''Design and
FPGA-Implementation of a Neural Network", Proceedings of the
7th International Conference on Signal Processing Applications &
Technology, pages 939-943, Boston, USA, October 1996.

[3] Dr. M. Turhan Taner, "Kohonen's Seif Organizing Networks
With Conscience", Rock Solid Irnages, November 1997.

[4] K. Boehm, W. Broll, M. Sokolewicz, "Dynamic Gesture
Recognition Using Neural Networks; A Fundament for Advanced
Interaction Construction", SPIE Conference Electronic Imaging
Science & Technology, San Jose California, USA, Feb. 1994,

[5] Rolf F. Molz, Paulo M. Engel, Fernando G. Moraes, Lionel
Torres, Michel Robert, "Codesign of Fully Parallel Neural Network
for a Classification Problem", International Conference on
Infomiation Systems, Analysis and Synthesis, Orlando, USA, 2000.

[6] R. Gadea, J. Cerda, F. Ballester, A. Mocholi, "Artificial
neural network implementation on a single FPGA of a pipelined on-
line backpropagation", Proceedings of the 13th International
Symposium on System Synthesis (ISSS'00), pp 225-230, Madrid,
Spain, 2000.

240

